Name: \qquad
Student ID\#: \qquad
Registered Section: \qquad
Instructor: Lew Lowther

Solutions

York University

Faculty of Pure and Applied Science
Department of Computer Science

EECS 1520.03 COMPUTER USE: Fundamentals Test 1 - Version A

Instructions:

- This is an in class examination, therefore examination rules are in effect.
- Fill in the box at the top of this page, and print your ID\# at the top of each odd numbered page.
- Answer ALL questions.
- Time allowed is $\mathbf{5 0}$ minutes.
- Use of all electronic devices is PROHIBIED.
- There are $\mathbf{5}$ pages of questions in addition to the cover. Please count them.

Part A [5 points]

For each of these concepts, write the generation in which it was first used into the blank, and circle the history (hardware or software) to which it belongs.

assembly languages	\ldots	1
magnetic disks	2^{2}	hardware / software
hardware / software		

Part B [7 points]

A pattern of binary digits can be interpreted in several different ways.
Show how the pattern $\mathbf{0 1 1 0 1 1 1 0}$ translates using each of the following interpretations.

unsigned integer	110
integer in 2's complement notation	+110
integer in excess notation	-18
Hexadecimal short form	6 E
Octal short form	156
floating point notation	$+31 / 2$
ASCII	n

Part C [2 points]

1. In EECS1520, how many of a student's test grades can be annulled?
a) None
b) Only Test 2
c) Only Test 1
d) 0,1 , or 2
2. At what point in the course can a student in EECS1520 annul a test grade?
a) Before the test
b) At the end of the term
c) Immediately after the test
d) Never

Part D [5 points]

1) The process of converting sound to digital data is called \qquad .
a) digitizing
b) reset
c) encoding
d) sampling
e) reclocking
2) The process of correcting degradation to digital data is called \qquad .
a) digitizing
b) reset
c) encoding
d) sampling
e) reclocking
3) \qquad removes redundant information from within a frame of a video.
a) Huffman encoding
b) Keyword encoding
c) Run length encoding
d) Spatial compression
e) Temporal compression
4) A discrete representation, breaking the information up into separate elements.
a) analog data
b) digital data
5) Data can be retrieved without any loss of the original information.
a) lossless
b) lossy
\qquad

Part E [5 points]

This partial worksheet generates random values that can be mapped onto Heads or Tails.

Random_Bit	0	0	1	1	0	0	0	0
Heads_or_Tails	Heads	Heads	Tails	Tails	Heads	Heads	Heads	Heads

1. Write a single Excel formula that will generate each Random_Bit when copied to the other cells. [3]

$$
=\operatorname{INT}(\operatorname{RAND}() * 2)
$$

2. In Excel, a formula on one worksheet that reads data from another worksheet
a) can only use relative addressing
b) cannot use LOOKUP
c) is called a "between the sheets formula"
d) is called an "intersheet formula"
e) is illegal
3. An Excel worksheet that contains instructions for the spreadsheet model would usually be called:
a) Comments
b) Parameters
c) Graph
d) Summary
e) Main Data

Part F [1 point] - Join the Dots

The dots below are labelled (on the left) in $\mathbf{2}$'s Complement notation.
Connect the dots that have negative numbers as labels.
Start with the smallest value and proceed to the largest.

Part G [15 points]

1) In 8-bit, 2's complement notation, how many of the bit patterns represent negative numbers?[1]
128
2) Perform the following calculation in Binary:[1]
0011.0001
0001.0011
+0100.0100
0100.0100
3) Express the above answer as a proper fraction in decimal.[1]
$41 / 4$
4) Show how to encode this value in 8-bit binary Floating Point notation.[1]

Not possible! 011110001 is 9 bits
Award a mark for this, or 01111000, or 01111001, or for saying "not possible".
5) Show how a computer would use 8 bit binary notation to compute the following. [5]

49 / 23
23 converts to
So -23 is
49 converts to
Add 49 and -23
The remainder is larger than the divisor so add -23 again
6) Perform the following calculation in Binary.[6] 25 * 36
$=25 *(32+4) \quad 1$
$=25 * 2^{5}+25 * 2^{2} \quad 1$
25 converts to $11001 \quad 1$
*2 $2^{5} 1100100000$
$1100100 \quad 1$
Add them
1110000100
1

Part H [10 points] - Short!! Answer

1) If the "*" is the flag character in a run-length encoding scheme, how would the following string be compressed?

XXXXXXXYYYYAAABBBBZZ
*X7*Y4AAA*B4ZZ
2) What is the compression ratio achieved by this process?

$$
14 / 20 \text { or } .7 \text { or } 70 \%
$$

3) Using the same run-length encoding scheme, unpack the following:

$$
X X * Y 8 X X * 14 X X
$$

XXYYYYYYYYXX1111XX
4) Use the following Huffman alphabet to decode the string.
$a=00 \quad r=1111 \quad d=110 \quad e=1110 \quad c=01 \quad t=10$
1111001011100010010010
rateatcat
5) Using the same Huffman alphabet, encode the following:
"crate"
01111100101110
6) What compression ratio was achieved by this encryption?

Original size: 5 characters @ 8 bits each $=40$ bits $14 / 40$ or .35 or 35%
7) What is the word that refers to the number of pixels used to represent a picture? resolution
8) Our retinas have three types of colour photoreceptor cells that respond to different sets of frequencies. To what colours do the photoreceptor categories correspond? red, green, blue
9) The storage of image information on a pixel-by-pixel basis is called raster graphics
10) If an image's size is 100×250 pixels, and is stored in Hi-Color format, how many bytes of memory are needed to store the image without compression?

$$
125 * 200=25,000 \text { pixels } * 2 \text { bytes/pixel }=50,000 \text { bytes }
$$

